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To investigate the role of information flow in group formation, we introduce a model of communication and
social navigation. We let agents gather information in an idealized network society and demonstrate that
heterogeneous groups can evolve without presuming that individuals have different interests. In our scenario,
individuals’ access to global information is constrained by local communication with the nearest neighbors on
a dynamic network. The result is reinforced interests among like-minded agents in modular networks; the flow
of information works as a glue that keeps individuals together. The model explains group formation in terms of
limited information access and highlights global broadcasting of information as a way to counterbalance this
fragmentation. To illustrate how the information constraints imposed by the communication structure affects
future development of real-world systems, we extrapolate dynamics from the topology of four social networks.

DOI: 10.1103/PhysRevE.79.026111 PACS number�s�: 89.75.Fb, 01.20.�x, 89.65.�s

Social groups with different music tastes, political convic-
tions, and religious beliefs emerge and disappear on all
scales; but how do they form? Do they form because hetero-
geneous people search and navigate their social network to
find like-minded people, or because interests are reinforced
by interactions between people in social networks with
modular topologies? For example, assuming heterogeneous
people who seek like-minded neighbors, Schelling proposed
a simple model to understand how segregation emerges in
urban areas �1�. Later Arthur suggested that the emergence of
industrial centers is a result of positive feedback between
agencies that prefer to be close to similar agencies �2�. How-
ever, if groups form because people are inherently different
and search for people who are like them, then the question
becomes where the different interests come from. If, instead,
it is because interests are reinforced in modular social net-
works �3�, then we must first understand why social net-
works are modular. Here we combine the two views and
investigate whether group formation can occur without pos-
iting that people have different intrinsic properties: Can the
heterogeneity in organization and the heterogeneity in indi-
vidual interests that drives the organization arise de novo?

Axelrod has demonstrated in a lattice model of ho-
mophyly and influence that global divergence can emerge
from local convergence �4�; groups form, endure, and di-
verge because people more likely influence like-minded
people and thereby gradually build interaction barriers to
people that are different �5–7�. Recently Centola et al. �8�
showed that adding passive network dynamics to Axelrod’s
model makes it less sensitive to cultural drift �9�. We also
take the dynamic network perspective, but consider a differ-
ent viewpoint and a different framework. Instead of pas-
sively adding and removing links based on the similarity
between agents �8�, we study how individuals actively drive

a flow of information beyond nearest neighbors and make
changes in the network in their quest for information. With
this approach, assuming only that people are influenced by
recent communication, we demonstrate that the flow of in-
formation works as a glue that maintains an integrated soci-
ety, and that limited access to global information and rein-
forcement of local interests can generate social groups.

To achieve this, and to better understand the effect of
constrained communication on group formation, we intro-
duce a simple agent-based network model of communication
and social navigation. We use social navigation to represent
people’s attempt to come nearer to the information source in
the network they find interesting. The model is inspired by
everyday human conversation and captures the feedback be-
tween interest formation and emergence of social structures.
Taking this approach, we acknowledge that the goal of indi-
viduals to understand and agree with their closest associates
�10–13� can be obtained either by adjusting their interests or
by adjusting their contacts �14�. Because people can only
interact with a few friends �15�, we use networks to represent
the social structure in which the dynamic is embedded
�12,16,17�. If people were not limited to interactions with
only a few friends, and everybody could share information
with everybody else, the interactions in a society could in-
stead be described by a mean-field model in which every-
body has access to all information. In contrast, a network
representation can capture the constrained flow of informa-
tion through social systems �18� and offers an efficient way
to study adaptive changes in the social structure �19�.

I. MODELING COMMUNICATION AND SOCIAL
NAVIGATION

To illustrate the dynamics with a real-world example, con-
sider two colleagues in science: a Ph.D. student and her su-
pervisor. After years of collaboration, the student’s scientific
skills and interests have become more and more similar to
her supervisor’s. Consequently, when graduation day ap-
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proaches and the student looks for a postdoctoral position,
her choice is inevitably biased by the influences from her
supervisor. So where does she go? From experience, we
know with high probability that she goes to one of her su-
pervisor’s scientific friends—friends who themselves have
influenced and have been influenced by the supervisor and
with whom it will be easy to establish a connection. That is,
when the student navigates her social network for better ac-
cess to information she is interested in, she uses information
that has traveled across the network beyond her nearest
neighbors. In this way, whether it is the quest for up-to-date
information in science, business, or fashion, the organization,
individual preferences, and flow of information make a so-
cial system integrated.

To capture this dynamic, our model approach is to use
agents with one goal: to be updated about topics they find
interesting. For simplicity, we limit the objects of interest to
the agents themselves and exclude extrinsic topics. Agents
achieve this goal by communicating with connected friends
and establishing new contacts in a changing social network.
To improve their position in the network when making new
friends, the agents need a perception of the overall system.
By mimicking conversation in everyday life, the agents
gather information from distant parts of the network and
build a simplistic map of the network beyond nearest neigh-
bors. As the agents build their perception of the system
through repeated communication with their friends, they
gradually align their interests with agents in their proximity
and thereby also align their future social choices.

A. Implementation

We incorporate the above elements of human interactions
in a simple model with N agents that quantifies communica-
tion and social navigation through three parameters: the
communication to social navigation ratio C /R, the interest
size �, and the flexibility �. Central to the model is to build

and use a perception of the system. We therefore give each
agent i an individual memory Mi. The memory consists of
three one-dimensional arrays,

Mi=�Mi
rec recollection of who provided the information,

Mi
age the quality �age� of the information,

Mi
int the interest preferences in agents.

�
The recollection memory contains N names of the friends
Mi

rec�j� that provided information about agents j=1, . . . ,N.
To compare the quality of the information with friends, the
quality memory stores the age of each of the N pieces of
information. Finally, the interest memory contains �N�N
names of agents in a proportion that reflects the interest in
these agents. Recollection and quality memories Mi

rec and
Mi

age constitute agent i’s local map of the social structure
�20�, and Mi

int is the interest memory with priorities of other
agents �see Fig. 1�.

The basic model, accessible as an interactive Java applet
�21�, is defined in terms of N agents connected by a fixed
number of links L. The network model is executed in time
steps, each consisting of one of the two events

1. Communication C, and
2. Social navigation R,

where the selection of communication topic and social-
navigation direction are associated with interests as de-
scribed in Fig. 1.

To select a topic of communication or direction of social
navigation, an agent simply picks a random element in her
interest memory and reads off the name of the agent that she
has stored there. Because the agents also update their interest
memories when they communicate, the generated feedback
between the organization and the agents’ interests makes the
structure of the interest memory of crucial importance to the
outcome of the dynamics. For example, the degree to which
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FIG. 1. �Color online� Modeling communication and social navigation. The depicted memory illustrates, from left to right, agent indices
for the recollection memory, clocks for the quality memory, and bars for the interest memory. For example, the number of bars in Mi�k�
corresponds to the number of elements mi�k� of agent i’s interest memory that are allocated to agent k, with the black bar representing the
global and fixed interest. �a� Communication C. A random agent i selects one of her neighbors j proportional to her interest in j. Similarly,
either of the two agents selects agent k from her interest memory. When agents i and j communicate, they update their interest memories
�agents i and j replace a fraction � of their interest memory with k. Similarly, both agents reciprocally increase their interest in the other
agent� and the information about each other. �Both agents update their recollection and quality memories: Mi

rec�j�= j and Mi
age�j�=0 for i,

and M j
rec�i�= i and M j

age�i�=0 for j.� The agent with the oldest memory about k updates her information about k. �For example, if
Mi

age�k��M j
age�k�, agent i makes the updates Mi

rec�k�= j and Mi
age�k�=M j

age�k�.� �b� Social navigation R. A random agent i selects an
agent k proportional to her interest in k and recollects the friend j=Mi

rec�k� who provided her with information about k. Subsequently agent
i forms a link to her friend’s friend, that is, j’s friend l=M j

rec�k�, to shorten her distance to k. To keep the number of links fixed in the
network, one random agent loses one random link.
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the selection is biased toward recent communication, or local
interests, controls the strength of this feedback. Global inter-
ests generate a homogeneous organization; local interests
generate a heterogeneous organization. By letting the first N
elements of the interest memory form the global interest and
the remaining �N−N elements form the local interest, the
parameter � provides full control of the strength of the feed-
back. The elements of the static global interests are fixed to
each of the N agents’ names, whereas the elements of local
interest are updated by communication. The interest size �
therefore effectively works as a local to global interest bias.

For �=1, any topic is selected with equal chance, whereas
larger � increases the bias of proportionate local interest se-
lection over random global interest selection. The modeling
of proportional allocation of interests is not only the simplest
possible mechanism; it is also in accord with Spencer’s ob-
servation of proportionality between interest and previous
experience �3�. Also related to this use of proportionate se-
lection is the work by Simon to explain Zipf’s law for word
usage �22�, and the work presented in Refs. �23,24� to model
emergence of money and fashions.

B. Simulation

We initiate each simulation by filling the local interest
memory with random names. Later, each turn agent i com-
municates with or about another agent j, the name of j ran-
domly replaces a fraction � of i’s dynamic interest memory.
That is, Mi

int���→ j for ���N−N� values of �� �N
+1,�N�. Thereby old priorities will fade as they are replaced
by new topics of interest. We denote by mi�k� the number of
elements of agent i’s interest memory that are allocated to
agent k. When selecting a communication topic or the direc-
tion of social navigation, agent i, by choosing a random el-
ement in her interest memory, selects agent k proportional to
mi�k�.

We increment the age Mage by one after every L commu-
nication events. Because every agent always has information
with age 0 about itself, Mi

age�i�=0, the age of the informa-
tion about an agent becomes older as, through communica-
tion, it percolates away from the agent in the network. As-
suming that agents are not lying �25�, the age of the
information is therefore a good proxy for how far it has
traveled across the network. Consequently, when two agents
communicate about a third agent, and evaluate the quality of
the information based on its age, the agent with the newest
information tends to be closer to the third agent. This guar-
antees that the recollection memory works as an efficient
local map of the social structure.

Social navigation, which corresponds to a rewiring of the
network, is a slow process compared to communication. If
this were not the case, random people would share reliable
information with anybody and the interactions could more
simply be described by a mean-field model. We therefore
simulated the model with on average C /R=10 communica-
tions per link for each rewiring event in the system. Because
links are formed to friends of friends, the model captures the
concept of triadic closure �26,27�. Moreover, because friends
refer to the particular agents that have provided the most

recent information about the selected agent, new links are
formed on the basis of the memory rather than on the basis
of the present network �28�. For example, because the recol-
lection memory can be out of date, links do not always com-
plete triangles as in Fig. 1�b� and because all agents are
represented in every agent’s static global interest memory
separated clusters can reconnect. In particular, two friends
with large mutual interest in each other that by chance lose
their common link tend to reestablish a direct link at some
later occasion.

II. RESULTS

The model of communication and social navigation pre-
sented above generates interest groups in modular networks
without assuming that people are different from the begin-
ning. The mechanism that drives the process is a feedback
between interest formation and the emergence of social
structures catalyzed by the flow of information.

A. Model networks

To illustrate the formation of groups, in Figs. 2�a�–2�c� we
show three networks generated by interest sizes �=1, 10,
and 100, respectively. That is, in the network in Fig. 2�a�,
there is only random global interest selection, whereas the
more modular networks in Figs. 2�b� and 2�c� are generated
with dominating local proportionate interest selection. Be-
cause an agent’s interest memory is filled with other agents’
names proportional to their occurrence in recent local con-
versations, social navigation will be directed toward these
agents. Subsequent reinforcements generate interest groups
manifested in the modular networks.

To quantify how modular the networks are, we partition
the network into groups so as to minimize a description of
the network �29�. Given this information-theoretic partition-
ing of the network into modules of sizes �sl�, we define the
typical module size s as the average module size that a ran-
domly selected agent is part of,

s = 	sl
2
/	sl
 . �1�

To only consider true modules, we do not count modules of
size 1 with agents without links. Figure 2�d� shows the result
of increasing local interest memory. After a small increase in
the typical module size for small interest memory, because
fewer agents are disconnected, s decreases steadily as agents
increasingly focus their attention on other agents in their
proximity.

When close-by agents receive more attention, they will
also be frequent targets of social navigation. As Fig. 2�e�
illustrates, this strongly affects the abundance of triads, here
measured in units of the random expectation of triangles
� /�r �30�. When agents shift their attention to their neigh-
borhood, the centralized network breaks down. Figure 2�f�,
showing the typical size of the largest hub, kmax, captures this
transformation. Overall, for increasing but small interest size
�, the largest hubs receive more attention, which allows the
system to remain in one module. When � exceeds 5, s de-
creases strongly, the degree distribution narrows further, and
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the number of triangular cliques increases substantially. The
topological measures quantify a transition from a scale-free
network at �=1 to a modular network at ��5. Moreover, a
striking feature is that as � increases, there are fewer nodes
without links. Presumably, these “singletons” more easily in-
tegrate into a social context in which they have a history.

The transition from a centralized to a modular structure,
driven by the potential to form individual interests, is of
course also manifested in the interest memory itself. To
quantify this transition, we counted the typical number of
individuals an agent has in her interest memory, nlocal, and
the overall number of agents that receive attention from other
agents, nglobal.

The local social horizon,

nlocal = � �N

	mi
2�j�
/	mi�j�
� , �2�

is calculated in a similar fashion as the typical module size.
The denominator, with averages over j, corresponds to agent
i’s typical interest allocation in an agent. The typical number
of individuals an agent has in her interest memory is simply
the number of such allocations there is room for in an agent’s
interest memory, averaged over all agents. Because only a
limited amount of information is exchanged with agents out-
side the local social horizon, it can also be thought of as an
information horizon �31�.

The global social horizon,

nglobal =
�N2

	m2�j�
/	m�j�

, �3�

is calculated by pooling the agents’ interest memories to-
gether into m�j� for the total number of elements allocated to
agent j. Figure 2�g� shows the local horizon of the individual
agent together with the global horizon of all individuals. As
� increases, nlocal collapses while nglobal remains on the order
of N; the development toward social cliques is democratic,
with anyone getting a fair share of attention while still allow-
ing people to focus locally on members of their particular
“club.”

To illustrate the robustness of the model, in Figs.
2�d�–2�g� we show the results for two interest-adaptation
rates �, corresponding to two widely different speeds �stub-
born and flexible� at which old priorities are replaced. We
observe that even a factor of 100 change in frequency of
priority replacement only has a small effect on the network
topologies. Ultimately, at sufficiently high flexibility, such
that agents have completely different interests every time
they update their social connections, the modular structure
breaks down.

B. Real-world networks

In Fig. 2, we used a small network with relatively few
links to illustrate the effect of interest-memory size on the
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FIG. 2. �Color online� Local communication generates social groups. From left to right, the networks are generated with increasing
interest size � ��=1 in �a�, �=10 in �b�, and �=100 in �c��. As a function of �, the bottom panels illustrate the typical module size in �d�,
the cliquishness in �e�, the maximum degree in the network in �f�, and social horizon in �g�. Simulations are based on C /R=10 communi-
cation events per link for each social navigation event in the system, with system size fixed to 100 agents and 150 links. The results are
robust to a 100-fold drop in the communication-to-rewiring ratio, but break down at an even lower communication rate when only small
groups can be maintained by the communication. In addition, panels �d�–�g� illustrate the dependence of the rate of interest adaptation, or
flexibility, with a �=0.01% change of the interest elements per communication event for stubborn adaptation �black lines�, and a �=1%
change for flexible adaptation �shaded lines�. Stubborn adaptation corresponds to a flexibility of 15% change in the interest memory when
all links are changed once, whereas flexible adaptation corresponds to complete reallocation. Data are collected from 1000 samples over a
time corresponding to 1000 rewirings of each link in the network. Error bars represent standard deviation.
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topology of the network. For larger networks with more
links, the group size will similarly be determined by the
interest-memory size rather than the system size. In general,
at any reasonably high level of communication-to-social
navigation ratio C /R and low level of flexibility �, the result
is independent of variation in C /R and �, and the outcome of
the dynamics therefore predominantly determined by the in-
terest size �. That is, for a given set of nodes and links, our
model will map each size of interest memory to social net-
works with a certain degree of modularity, quantified by s, �,
and kmax. Accordingly, by fitting the interest size � to match
the typical module size s for real-world networks, the con-
sistency of our model assumptions can be tested directly. To

execute this test, we compared the number of triangles and
the maximum degree of the simulated networks with the val-
ues of the real-world network. The dynamics were initiated
by communication without rewirings to let the agents adapt
their memories to the network. In Fig. 3 we show the ex-
trapolated dynamics and in Table I we report the results for
Zachary’s karate club network �32� and the dolphin social
network reported by Lusseau et al. �33�. For comparison, in
Table I we have also included a very modular network, the
largest component of the coauthorship network in network
science compiled by Newman �34�, and a nonmodular net-
work, the prison network collected by Gagnon and analyzed
by MacRae �35�.
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FIG. 3. �Color online� Dynamic extrapolation from snapshots of real networks. The dynamics in �a�–�e� were generated from the karate
club network �32� by setting the interest size �=30 to match the typical module size of the original network. The networks are from left to
right: �a� the original karate network, �b� the network halfway through the simulation, and �c� the network in the end of the simulation when
each link on average has been rewired 500 times. Under the networks, panel �d� illustrates covariance between the total interest in the black
node and its degree. Panel �e� shows how the information divergence of the interest memories between the black and the shaded node
changes over time, together with the shortest path in the network between the two nodes. Similarly, the dynamics in �f�–�j� were generated
from the dolphin social network �33� by setting �=12 to match the typical module size of the original network.

TABLE I. Consistency tests for dynamic extrapolationsa from snapshots of four real-world networks
averaged over 1000 rewirings per link with the ranges given by the standard deviation.

Network N L � s � kmax

Karate club network 34 78 17 45 17

simulated 30 18	6 50	6 11	2

Dolphin social network 62 159 34 95 12

simulated 12 33	10 95	10 15	2

Coauthorship network 379 914 57 921 34

simulated 100 56	17 1078	165 25	4

Prison network 67 142 67 58 11

simulated 2 56	7 74	9 16	3

aWe used a stubborn interest adaptation and updated one element in the interest memory per communication
event.
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The modular structure in the karate club network can be
reproduced by �=30, whereas the more integrated social ties
of the dolphin social network are reproduced by �=12 �see
Table I and Fig. 3�. Because the average degree is higher in
the real-world networks than in the test network in Fig. 2, the
modularity for a given � is reduced from the expectations of
Fig. 2. Overall Table I and Fig. 3 show good fits to the real
networks, with reproduced triangle enhancement � /�r3 in
both real and modeled networks. The main deviation is from
the high kmax of the real karate club network, which presum-
ably reflects a particularly high communication frequency of
the administrator and the principal trainer of the club, the
two hubs in the network.

To capture the very modular structure in the coauthorship
network, local interests dominate over global interests by a
factor of 100 for � in the simulation. Presumably geographi-
cal constraints generate the remarkably limited social hori-
zons. Contrarily, in the nonmodular prison network, local
and global interests were simulated with equal weights.

Figure 3 illustrates two key aspects of the model: the pre-
dictive power of the dynamics and the strong coupling be-
tween the network and the agents’ interests. First, the net-
works in the top panels illustrate �here assuming steady-state
modularity� an ensemble of future network developments for
the karate club network and the dolphin social network. Con-
sequently, the model can be used to analyze the effects of
social engineering and managed information flow in real-
world systems. One example would be to explore the effect
on an organization of changing the communication rate, by
introducing interest biases, or by broadcasting certain ideas
across the system.

Second, the middle panels of Fig. 3 show how the total
interest in the black agent in the networks correlates with the
number of contacts the agent has. In general, the more links
an agent has, the more attention it receives. Further, the bot-
tom panels show how the network distance between the
black and the shaded agents covaries with the information
divergence between their interest memories. The information
divergence, also known as the Kullback-Leibler divergence,
corresponds to the number of bits needed to determine the
shaded node’s interest memory, given information about the
black node’s interest memory �36�. Accordingly, the strong
correlation between network distance and interest divergence
in the bottom panels illustrates the popular saying, “Tell me
who your friends are, and I will tell you who you are.”

III. DISCUSSION

We have used communication and social navigation to
model the feedback between people’s interests and the social
structure. This makes it possible to investigate the interplay
between fragmentation and coherence in social systems. The
abstract model of human interactions quantifies communica-
tion and social navigation through three parameters, the
communication-to-social navigation ratio C /R, the interest
size �, and the flexibility �. We find that the interest size is
the predominant parameter and that agents with an increased

possibility to form individual interests �high �� drive the
evolving system to a modular network with a tighter infor-
mation horizon. Accordingly, the model emphasizes the re-
inforcement of interest allocation �3,22� as the key mecha-
nism for the development of groups.

Our idealized model world starts out with agents with
equal properties. In spite of this homogeneity, the dynamics
generate groups manifested in networks with modular struc-
ture and agents with widely different priorities. Repetition of
recent communication and reinforced contacts with people
one talks about lead to local agreement and global diver-
gence.

Central to the model is to build and use the interest
memory. Here we have explored a particularly simple linear
model for both the construction and the use of priorities, and
shown that this is sufficient to generate heterogeneous inter-
ests. However, the model framework can be extended to
more detailed networking games, including, for example,
trust �13�, cheating agents �25�, or update of priorities based
on experiences of the reliability of the obtained information.
Undoubtedly, real humans will have different intrinsic prop-
erties.

Here, without positing that people have different intrinsic
properties, we have illustrated how the constraints on the
information flow through a system and the potential for in-
dividuals to form heterogeneous interests affect the future
development of a system. To achieve this, we extrapolated
dynamics from the topology of four social networks and
found a good agreement between modeled and real-world
data. This substantiates our claim that one important step
when trying to understand social dynamics is to understand
the feedback between interest formation and the emergence
of social structures catalyzed by the flow of information
across the system.

In general, the emerging structures are robust conse-
quences of an interplay between the following positive feed-
back mechanisms:

1. Network centrality
being central�new information,
2. Positive assortment
agent’s interest�neighbor’s interest,
3. Group formation
move toward interest� localization of interest.
Without individuals with personal interests, only the first

feedback is active, but it is in itself enough to give the net-
work a broad degree distribution �25�. The two subsequent
reinforcements generate interest groups in modular networks.
Together these positive feedback mechanisms make it favor-
able to manipulate the spreading of interests.

Positive-feedback mechanisms are also inherent in the
models of homophyly and influence �4,6–8�, in which agents
forming groups develop a “language” that makes interactions
more likely within groups and less likely between groups;
but when those models see the heterogeneity of the popula-
tion as driving the cultural differentiation, the model pre-
sented here instead emphasizes communication barriers in
the system as the driving force behind group formation.
Thereby this model makes it possible to manipulate the

M. ROSVALL AND K. SNEPPEN PHYSICAL REVIEW E 79, 026111 �2009�

026111-6



spreading of interests and study the emerging social struc-
tures. From an altruistic perspective, increased global ran-
dom broadcasting �lower �� counteracts fragmentation and
facilitates better communication across the network. From a
competitive perspective, individuals exploring global broad-
casting to project their own interest onto others will gain
enormously in prestige and emerge as central hubs.
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